In enzymology, a butyrate kinase () is an enzyme that catalysis the chemical reaction
Thus, the two substrates of this enzyme are ADP and butyryl-phosphate, whereas its two products are ATP and butyrate.
This enzyme belongs to the family of , specifically those transferring phosphorus-containing groups (phosphotransferases) with a carboxy group as acceptor. The systematic name of this enzyme class is ATP:butanoate 1-phosphotransferase. This enzyme participates in butyrate metabolism.
This enzyme is transcribed from the gene buk, which is part of the ASKHA super family.
The reaction above is a nucleophilic substitution reaction. An electron pair from an oxygen on ADP attacks the phosphorus on butyryl-phosphate, breaking the bond between phosphorus and oxygen to create ATP and butyrate. The arrow-pushing mechanism is shown above.
The reaction can also occur in the reverse direction, as shown below, under certain fermentation conditions.
The investigators of the study that produced the crystallization of 1X9J hypothesized that the enzyme was an octomer formed from dimers. The crystallized form has a radius of 7.5 nm which corresponded to a molecular weight of 380 kDa. Because a monomer of buk2 is about 43 kDa, it was believed that the enzyme itself was either an octomer or a nonamer. Investigators hypothesized that the enzyme was an octomer since most of the proteins within the ASHKA super family form dimers.
Butyrate plays an important role within cells as it affects cellular proliferation, differentiation, and apoptosis.
Because of the significant roles that butyrate plays within cells, it is essential that butyrate kinase is functioning correctly, which can be done through regulation of the enzyme. One study has previously found that butyrate kinase is not regulated by its end-products or other acids such as acetic acid, but more studies need to be conducted to further elucidate the regulation of butyrate kinase.
|
|